Муниципальное образование г. Тула (УО администрации г. Тулы)

Муниципальное бюджетное общеобразовательное учреждение «Центр образования №10» имени А.В.Чернова 300044,г. Тула, ул. М. Горького, 41

тел./факс (4872) 34-99-71

e-mail:tula-co10@tularegion.org

Утверждаю Рассмотрено на заседании Согласовано ШМО учителей математики и Заместитель директора по УВР Директор МБОУ«ЦО№10» информатики. Рекомендовано к утверждению Протокол№1 от 30.08.2024 (Филиппова Л.П.) (О.Н.Чернышёва) Приказ№10-01-10/388 от 30.08.2024 Принято на заседании педагогического совета МБОУ«ЦО№10» Протокол №1 от 30.08.2024

РАБОЧАЯ ПРОГРАММА

Учебного предмета «Алгебра и начала математического анализа. (Углубленный уровень)» для среднего общего образования в 10-11 классах

Срок освоения программы: 2 года

Программу составил: Гущина Е.И..

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по учебному предмету «Алгебра (Углубленный уровень) на уровне среднего общего образования разработана на основе:

- Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки РФ от 17 мая 2012 г. № 413 (с изменениями и дополнениями) (далее ФГОС СОО);
- Федеральной образовательной программы среднего общего образования, утвержденной приказом Министерства просвещения РФ от 18 мая 2023 г. № 371;
- Устава МБОУ «ЦО № 10»;
- Основной образовательной программы среднего общего образования МБОУ «ЦО №10»;
- Рабочей программы воспитания МБОУ «ЦО №10»;
- Положения о рабочих программах.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

«Алгебра и начала математического анализа» (углубленный уровень)

Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного учебного курса обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.

Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. В то же время овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.

В ходе изучения учебного курса «Алгебра и начала математического анализа» обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.

Учебный курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так И через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.

В структуре учебного курса «Алгебра и начала математического анализа» выделены следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и

логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и другие. По мере того как обучающиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении учебного курса, для решения самостоятельно сформулированной математической задачи, а затем интерпретировать свой ответ.

Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближённые вычисления, оценивать числовые выражения, работать с математическими константами. Знакомые обучающимся множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел, особые свойства рациональных и иррациональных чисел, арифметические операции, а также извлечение корня натуральной степени на множестве комплексных чисел. Благодаря последовательному расширению круга используемых чисел и знакомству с возможностями их применения для решения различных задач формируется представление о единстве математики как науки и её роли в построении моделей реального мира, широко используются обобщение и конкретизация.

Линия «Уравнения и неравенства» реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате обучающиеся овладевают методами решения рациональных, иррациональных, различными показательных, логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественнонаучных задач, наглядно демонстрирует свои возможности как языка науки.

Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим

анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.

Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.

Содержательно-методическая линия «Множества и логика» включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины и их приложения в единое целое. Поэтому важно дать возможность обучающемуся понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование определённым правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления обучающихся, позволяет им строить свои рассуждения на основе логических правил, формирует навыки критического мышления.

В учебном курсе «Алгебра и начала математического анализа» присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса широко используется для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса «Алгебра и начала математического анализа».

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе старшей школы, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой

стороны, формирует логическое и абстрактное мышление учащихся на уровне, необходимом для освоения курсов информатики, обществознания, истории, словесности. В рамках данного курса учащиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.

Курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их в повседневной жизни. В тоже время овладение абстрактными и логически строгими математическими конструкциями развивает умение находить закономерности, обосновывать истинность утверждения, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление. В ходе изучения алгебры и начал математического анализа в старшей школе учащиеся получают новый опыт решения прикладных задач, построения математических моделей самостоятельного реальных ситуаций интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и в искусстве, с выдающимися математическими открытиями и их авторами.

Курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей самостоятельности, аккуратности, продолжительной концентрации внимания и ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.

Структура курса «Алгебра и начала математического анализа» включает следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения в старшей школе, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин: алгебра, тригонометрия, математический анализ, теория множеств и др. По мере того как учащиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные в курсе «Алгебра и начала математического анализа», для решения самостоятельно сформулированной математической задачи, а затем интерпретировать полученный результат.

Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато в основной школе. В старшей школе особое внимание уделяется формированию прочных вычислительных навыков, включающих в себя использование различных форм записи действительного числа, умение рационально выполнять действия с ними, делать прикидку, оценивать результат. Обучающиеся получают навыки приближённых вычислений, выполнения действий с числами, записанными в стандартной форме, использования математических констант, оценивания числовых выражений.

Линия «Уравнения и неравенства» реализуется на протяжении всего обучения в старшей школе, поскольку в каждом разделе программы предусмотрено решение

соответствующих задач. Обучающиеся овладевают различными методами решения целых, рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и их систем. Полученные умения используются при исследовании функций с помощью производной, решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования целых, рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления учащихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки.

Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.

Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, у которых появляется возможность исследовать и строить графики функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и их авторах.

Содержательно-методическая линия «Множества и логика» в основном посвящена элементам теории множеств. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины в единое целое. Поэтому важно дать возможность школьнику понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей.

В курсе «Алгебра и начала математического анализа» присутствуют также основы математического моделирования, которые призваны сформировать навыки построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и

математического анализа и интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал курса широко используется для решения прикладных задач. При решении реальных практических задач учащиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем курса «Алгебра и начала математического анализа».

ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ УЧЕБНОГО ПРЕДМЕТА «Алгебра и начала математического анализа»

- установление доверительных отношений между учителем и его учениками, способствующих позитивному восприятию учащимися требований и просьб учителя через живой диалог, привлечение их внимания к обсуждаемой на уроке информации, активизацию их познавательной деятельности через использование занимательных элементов, историй из жизни современников;
- применение в ходе урока интерактивного взаимодействия обучающихся (дискуссии, урок деловая игра, групповая работа или работа в парах и др.);
- проведение учебных (олимпиады, мастер-классов и др.) и учебно развлекательных мероприятий (турниры, выставки тематического ручного творчества (изготовление моделей, рисунков и пр.) и др.);
- использование ИКТ и дистанционных образовательных технологий обучения (программы-тренажеры, тесты в электронных приложениях, мультимедийные презентации, научно-популярные передачи, фильмы, обучающие сайты и программы, уроки онлайн, видео лекции, видео конференции и др.);
- использование воспитательных возможностей содержания учебного предмета через демонстрацию детям примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, перевод содержания с уровня знаний на уровень личностных смыслов, восприятие ценностей через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе, анализ поступков людей, историй судеб, комментарии к происходящим в мире событиям и др.

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

В учебном плане на изучение курса алгебры и начал математического анализа на углубленном уровне отводится 272 часа: в 10 классе -136 часов (4 часа в неделю), в 11 классе -136 часов (4 часа в неделю).

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

10 класс

Математика: Алгебра и начала математического анализа, геометрия: Алгебра и начала математического анализа/ Алимов Ш.А., Колягин Ю.М., Ткачева М.В. и другие - АО «Издательство «Просвещение»

11 класс

Математика: Алгебра и начала математического анализа, геометрия: Алгебра и начала математического анализа/ Алимов Ш.А., Колягин Ю.М., Ткачева М.В. и другие - АО «Издательство «Просвещение»

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

Числа и вычисления

Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.

Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.

Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.

Арифметический корень натуральной степени и его свойства.

Степень с рациональным показателем и её свойства, степень с действительным показателем.

Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы.

Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства

Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.

Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.

Преобразования числовых выражений, содержащих степени и корни.

Иррациональные уравнения. Основные методы решения иррациональных уравнений.

Показательные уравнения. Основные методы решения показательных уравнений.

Преобразование выражений, содержащих логарифмы.

Логарифмические уравнения. Основные методы решения логарифмических уравнений.

Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.

Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.

Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.

Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции. Периодические функции. Промежутки

монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.

Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.

Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.

Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.

Тригонометрическая окружность, определение тригонометрических функций числового аргумента.

Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.

Начала математического анализа

Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.

Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.

Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.

Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.

Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.

Множества и логика

Множество, операции над множествами и их свойства. Диаграммы Эйлера—Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.

Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.

11 КЛАСС

Числа и вычисления

Натуральные и целые числа. Применение признаков делимости целых чисел, наибольший общий делитель (далее – НОД) и наименьшее общее кратное (далее – НОК), остатков по модулю, алгоритма Евклида для решения задач в целых числах.

Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни п-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.

Уравнения и неравенства

Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.

Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.

Основные методы решения показательных и логарифмических неравенств.

Основные методы решения иррациональных неравенств.

Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.

Уравнения, неравенства и системы с параметрами.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.

Функции и графики

График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.

Тригонометрические функции, их свойства и графики.

Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.

Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона-Лейбница.

Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел.

Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА» (УГЛУБЛЕННЫЙ УРОВЕНЬ) НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества, представление о математических основах функционирования различных структур, явлений, процедур гражданского общества

(выборы, опросы и другое), умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

2) патриотического воспитания:

сформированность российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностное отношение к достижениям российских математиков и российской математической школы, использование этих достижений в других науках, технологиях, сферах экономики;

3) духовно-нравственного воспитания:

осознание духовных ценностей российского народа, сформированность нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного, осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений, восприимчивость к математическим аспектам различных видов искусства;

5) физического воспитания:

сформированность умения применять математические знания в интересах здорового и безопасного образа жизни, ответственное отношение к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), физическое совершенствование при занятиях спортивно-оздоровительной деятельностью;

6) трудового воспитания:

готовность к труду, осознание ценности трудолюбия, интерес к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы, готовность и способность к математическому образованию и самообразованию на протяжении всей жизни, готовность к активному участию в решении практических задач математической направленности;

7) экологического воспитания:

сформированность экологической культуры, понимание влияния социальноэкономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем, ориентация на применение математических знаний для решения задач в области окружающей среды, планирование поступков и оценки их возможных последствий для окружающей среды;

8) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, понимание математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладение языком математики и математической культурой как средством познания мира, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия Базовые логические действия:

выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;

воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные;

выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий;

делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;

проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные суждения и выводы;

выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;

проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;

самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;

прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;

выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

структурировать информацию, представлять её в различных формах, иллюстрировать графически;

оценивать надёжность информации по самостоятельно сформулированным критериям.

Коммуникативные универсальные учебные действия

Общение:

воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;

в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои

суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения;

представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Регулятивные универсальные учебные действия

Самоорганизация:

составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль, эмоциональный интеллект:

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов, владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;

предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;

оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

Совместная деятельность:

понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач, принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей;

участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в **10 классе** обучающийся получит следующие предметные результаты по отдельным темам рабочей программы учебного курса «Алгебра и начала математического анализа»:

Числа и вычисления:

свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;

применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;

применять приближённые вычисления, правила округления, прикидку и оценку результата вычислений;

свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;

свободно оперировать понятием: арифметический корень натуральной степени;

свободно оперировать понятием: степень с рациональным показателем;

свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;

свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента;

оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства:

свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия, равносильные неравенства;

применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;

свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;

свободно оперировать понятиями: система линейных уравнений, матрица, определитель матрицы 2×2 и его геометрический смысл, использовать свойства определителя 2×2 для вычисления его значения, применять определители для решения системы линейных уравнений, моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат;

использовать свойства действий с корнями для преобразования выражений;

выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;

использовать свойства логарифмов для преобразования логарифмических выражений;

свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;

применять основные тригонометрические формулы для преобразования тригонометрических выражений;

свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики:

свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;

свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства;

свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;

свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня n-ой степени как функции обратной степени с натуральным показателем;

оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;

свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;

свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;

использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;

Начала математического анализа:

свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и экспоненциальный рост, формула сложных процентов, иметь представление о константе;

использовать прогрессии для решения реальных задач прикладного характера;

свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;

свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;

свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;

свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;

вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;

использовать геометрический и физический смысл производной для решения задач.

Множества и логика:

свободно оперировать понятиями: множество, операции над множествами;

использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;

свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.

К концу обучения в **11 классе** обучающийся получит следующие предметные результаты по отдельным темам рабочей программы учебного курса «Алгебра и начала математического анализа»:

Числа и вычисления:

свободно оперировать понятиями: натуральное и целое число, множества натуральных и целых чисел, использовать признаки делимости целых чисел, НОД и НОК натуральных чисел для решения задач, применять алгоритм Евклида;

свободно оперировать понятием остатка по модулю, записывать натуральные числа в различных позиционных системах счисления;

свободно оперировать понятиями: комплексное число и множество комплексных чисел, представлять комплексные числа в алгебраической и тригонометрической форме, выполнять арифметические операции с ними и изображать на координатной плоскости.

Уравнения и неравенства:

свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства, находить их решения с помощью равносильных переходов; осуществлять отбор корней при решении тригонометрического уравнения;

свободно оперировать понятием тригонометрическое неравенство, применять необходимые формулы для решения основных типов тригонометрических неравенств;

свободно оперировать понятиями: система и совокупность уравнений и неравенств, равносильные системы и системы-следствия, находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств;

решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры;

применять графические методы для решения уравнений и неравенств, а также задач с параметрами;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат.

Функции и графики:

строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций;

строить геометрические образы уравнений и неравенств на координатной плоскости; свободно оперировать понятиями: графики тригонометрических функций; применять функции для моделирования и исследования реальных процессов.

Начала математического анализа:

использовать производную для исследования функции на монотонность и экстремумы;

находить наибольшее и наименьшее значения функции непрерывной на отрезке;

использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком;

свободно оперировать понятиями: первообразная, определённый интеграл, находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона-Лейбница;

находить площади плоских фигур и объёмы тел с помощью интеграла;

иметь представление о математическом моделировании на примере составления дифференциальных уравнений;

решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

ОРГАНИЗАЦИЯ ПРОЕКТНОЙ И УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ ОБУЧАЮЩИХСЯ

Проектно-исследовательская деятельность относится к области детской самостоятельности, основывается на интересах школьников, приносит им удовлетворение, а значит, личностно-ориентирована на каждого ребенка. Особое значение

проектно-исследовательской деятельности в начальной школе заключается в том, что в её процессе они приобретают социальную практику за пределами школы, адаптируются к современным условиям жизни.

Целью проектной деятельности является:

- Формирование активной самостоятельной и инициативной позиции учащихся в учении.
- Формирование универсальных учебных действий.
- Развитие познавательного интереса учащихся.
- Реализация принципа связи обучения с жизнью.

Тематика проектов

- 1. Геометрические формы в искусстве.
- 2. Графы и их применение в архитектуре.
- 3. Матричная алгебра в экономике.
- 4. Задачи механического происхождения. (Геометрия масс, экстремальные задачи)
- 5. Математический бильярд.
- 6. Вероятностно-статистический подход к компьютерной обработке данных.
- 7. Моделирование экологических процессов.
- 8. Вирусы и бактерии. (Геометрическая форма, расположение в пространстве, рост численности.)
- 9. Финансовая математика.
- 10. Чертежи, фигуры, линии и математические расчеты в кройке и шитье.
- 11. Рисунки на координатной плоскости
- 12. Методы построения графиков уравнений и соответствий
- 13. Функционально-графический подход к решению задач
- 14. Магические квадраты
- 15. Софизмы и парадоксы
- 16. Построение плоских кривых в полярных координатах
- 17. Математический цветник: розы Гвидо Гранди
- 18. Математические характеристики египетских пирамид
- 19. Математические головоломки и кроссворды
- 20. Чудо задачник.
- 21. 13 способов решения квадратных уравнений
- 22. Несколько способов доказательства теоремы Пифагора
- 23. Виды задач на логическое мышление
- 24. Прямая и обратная операции в математике
- 25. Решение логических задач
- 26. Единые законы математики, искусства и природы
- 27. Математика и законы красоты
- 28. Математика вокруг нас

ВИДЫ ДЕЯТЕЛЬНОСТИ ОБУЧАЮЩИХСЯ, НАПРАВЛЕННЫЕ НА ДОСТИЖЕНИЕ РЕЗУЛЬТАТА

Использовать теоретико-множественный аппарат для описания хода решения математических задач, а также реальных процессов и явлений.

Оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты; иррациональное и действительное число; модуль действительного числа; использовать эти понятия при проведении рассуждений и доказательств, применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни.

Использовать приближённые вычисления, правила округления, прикидку и оценку результата вычислений.

Применять различные методы решения рациональных и дробно-рациональных уравнений; а также метод интервалов для решения неравенств.

Оперировать понятиями многочлен от одной переменной, его корни; применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач.

Оперировать понятиями: система линейных уравнений, матрица, определитель матрицы.

Использовать свойства определителя 2×2 для вычисления его значения, применять определители для решения системы линейных уравнений.

Моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат

Оперировать понятиями: функция, способы задания функции; взаимно обратные функции, композиция функций, график функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства; линейная, квадратичная, дробно-линейная и степенная функции.

Выполнять элементарные преобразования графиков функций .Знать и уметь доказывать чётность или нечётность функции, периодичность функции, находить промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке Формулировать и иллюстрировать графически свойства линейной, квадратичной, дробно-линейной и степенной функций Выражать формулами зависимости между величинами .Знать определение и свойства степени с целым показателем; подходящую форму записи действительных чисел для решения практических задач и представления данных

Формулировать, записывать в символической форме и использовать свойства корня n-ой степени для преобразования выражений Находить решения иррациональных уравнений с помощью равносильных переходов или осуществляя проверку корней. Строить график функции корня n-ой степени как обратной для функции степени с натуральным показателем

Формулировать определение степени с рациональным показателем.

Выполнять преобразования числовых выражений, содержащих степени с рациональным показателем.

Использовать цифровые ресурсы для построения графика показательной функции и изучения её свойств.

Находить решения показательных уравнений

Давать определение логарифма числа; десятичного и натурального логарифма.

Использовать свойства логарифмов для преобразования логарифмических выражений.

Строить график логарифмической функции как обратной к показательной и использовать свойства логарифмической функции для решения задач.

Находить решения логарифмических уравнений с помощью равносильных переходов или осуществляя проверку корней

Давать определения синуса, косинуса, тангенса и котангенса числового аргумента; а также арксинуса, арккосинуса и арктангенса числа Применять основные тригонометрические формулы для преобразования тригонометрических выражений .

Применять формулы тригонометрии для решения основных типов тригонометрических уравнений

Оперировать понятиями: последовательность, способы задания последовательностей; монотонные и ограниченные последовательности; исследовать последовательности на монотонность и ограниченность . Получать представление об основных идеях анализа бесконечно малых . Давать определение арифметической и геометрической прогрессии

Доказывать свойства арифметической и геометрической прогрессии, находить сумму членов прогрессии, а также сумму членов бесконечно убывающей геометрической прогрессии.

Использовать прогрессии для решения задач прикладного характер.

Применять формулу сложных процентов для решения задач из реальной практики

Оперировать понятиями: функция непрерывная на отрезке, точка разрыва функции, асимптота графика функции.

Применять свойства непрерывных функций для решения задач.

Оперировать понятиями: первая и вторая производные функции; понимать физический и геометрический смысл производной; записывать уравнение касательной.

Вычислять производные суммы, произведения, частного и сложной функции.

Изучать производные элементарных функций.

Использовать геометрический и физический смысл производной для решения задач

Применять основные понятия курса алгебры и начал математического анализа для решения задач из реальной жизни и других школьных предметов

Строить график композиции функций с помощью элементарного исследования и свойств композиции Строить геометрические образы уравнений и неравенств на координатной плоскости Использовать производную для исследования функции на монотонность и экстремумы; находить наи- большее и наименьшее значения функции непрерывной на отрезке; строить графики функций на основании проведённого исследования Использовать производную для нахождения наилучшего решения в прикладных, в том числе социально- экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

Получать представление о применении производной в различных отраслях знаний

Оперировать понятиями: первообразная и определённый интеграл. Находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона — Лейбница.

Находить площади плоских фигур и объёмы тел с помощью определённого интеграла.

Знакомиться с математическим моделированием на примере дифференциальных уравнений.

Получать представление о значении введения понятия интеграла в развитии математики

Использовать цифровые ресурсы для построения графиков тригонометрических функции и изучения их свойств. Решать тригонометрические уравнения и осущест- влять отбор корней с помощью тригонометрической окружности. Применять формулы тригонометрии для решения основных типов тригонометрических неравенств Использовать цифровые ресурсы для построения и исследования графиков функций

Применять свойства показательной и логарифмической функций к решению показательных и логарифмических неравенств Обосновать равносильность переходов

Решать иррациональные и комбинированные неравенства, с помощью равносильных переходов Использовать графические методы и свойства входящих в уравнение или неравенство функций для решения задачи

Оперировать понятиями: комплексное число и множество комплексных чисел Представлять комплексные числа в алгебраической и тригонометрической форме Выполнять арифметические операции с ними Изображать комплексные числа на координатной плоскости .Применять формулу Муавра и получать представление о корнях n-ой степени из комплексного числа

Знакомиться с примерами применения комплексных чисел для решения геометрических и физических задач

Оперировать понятиями: натуральное и целое число, множество натуральных и целых чисел.

Использовать признаки делимости целых чисел; остатки по модулю; НОД и НОК натуральных чисел; алгоритм Евклида для решения задач.

Записывать натуральные числа в различных позиционных системах счисления

Оперировать понятиями: система и совокупность уравнений и неравенств; решение системы или совокупности; равносильные системы и системы-следствия.

Находить решения систем и совокупностей целых рациональных, иррациональных, показательных и логарифмических уравнений и неравенств.

Применять системы уравнений к решению текстовых задач из различных областей знаний и реальной жизни; интерпретировать полученные решения.

Использовать цифровые ресурсы

Выбирать способ решения рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений и неравенств, содержащих модули и параметры Применять графические и аналитические методы для решения уравнений и неравенств с параметрами, а также исследование функций методами математического анализа .Строить и исследовать математические модели реальных ситуаций с помощью уравнений, неравенств и систем с параметрами

Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построен- ные модели с использованием аппарата алгебры, интерпретировать полученный результат Применять функции для моделирования и исследования реальных процессов Решать прикладные задачи, в том числе социально-экономического и физического характера, средствами алгебры и математического анализа.

СИСТЕМА ОЦЕНКИ ДОСТИЖЕНИЙ ОБУЧАЮЩИХСЯ

Для оценки достижений учащихся применяется пятибалльная система оценивания.

1. Оценка письменных и контрольных работ.

Отметка «5 ставится, если:

- 1) работа выполнена полностью;
- 2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- 3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

2)допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

1) работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

6) отвечал самостоятельно, без наводящих вопросов учителя;

7)возможны одна — две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если

удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Итоговая оценка знаний, умений и навыков

- 1. За учебную четверть и за год знания, умения и навыки учащихся по математике оцениваются одним баллом.
- 2. Основанием для выставления итоговой оценки знаний служат результаты наблюдений учителя за повседневной работой учеников, устного опроса, текущих и итоговых контрольных работ. Однако последним придается наибольшее значение.
- 3. При выставлении итоговой оценки учитывается как уровень теоретических знаний ученика, так и овладение им практическими умениями и навыками. Однако ученику не может быть выставлена положительная итоговая оценка по математике, если все или большинство его текущих обучающих и контрольных работ, а также итоговая контрольная работа оценены как неудовлетворительные, хотя его устные ответы оценивались положительно.

Оценка проектной работы.

Отметка «5»

- 1. Правильно поняты цель, задачи выполнения проекта.
- 2. Соблюдена технология исполнения проекта.
- 3. Проявлены творчество, инициатива.
- 4. Предъявленный продукт деятельности отличается высоким качеством исполнения, соответствует заявленной теме.

Отметка «4»

- 1. Правильно поняты цель, задачи выполнения проекта.
- 2. Соблюдена технология исполнения проекта, но допущены незначительные ошибки, неточности в оформлении.
- 3. Проявлено творчество.
- 4. Предъявленный продукт деятельности отличается высоким качеством исполнения, соответствует заявленной теме.

Отметка «3»

- 1. Правильно поняты цель, задачи выполнения проекта.
- 2. Допущены нарушения в технологии исполнения проекта, его оформлении.
- 3. Не проявлена самостоятельность в исполнении проекта.

Отметка «2»

1. Проект не выполнен или не завершен.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

70	Наименование разделов и тем программы	Количество часов			Электронные
№ п/ п		Все	Контроль ные работы	Практичес кие работы	(цифровые) образовательные ресурсы
1	Множество действительных чисел. Многочлены. Рациональные уравнения и неравенства. Системы линейных уравнений	24	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
2	Функции и графики. Степенная функция с целым показателем	12	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
3	Арифметически й корень n-ой степени. Иррациональны е уравнения	15	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
4	Показательная функция. Показательные уравнения	10	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
5	Логарифмическ ая функция. Логарифмическ ие уравнения	18	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
6	Тригонометриче ские выражения и уравнения	22	1		http://school- collection.edu.ru

					https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
7	Последовательн ости и прогрессии	10	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
8	Непрерывные функции. Производная	20	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
9	Повторение, обобщение, систематизация знаний	5	2		https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		136	10	0	

11 КЛАСС

№ п/ п	Наименование разделов и тем программы	Количество часов			Электронные
		Все	Контроль ные работы	Практичес кие работы	(цифровые) образовательные ресурсы
1	Исследование функций с помощью производной	22	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
2	Первообразная и интеграл	12	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
3	Графики тригонометриче ских функций.	14	1		http://school- collection.edu.ru

	Тригонометриче ские неравенства				https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
4	Иррациональны е, показательные и логарифмически е неравенства	24	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
5	Комплексные числа	10	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
6	Натуральные и целые числа	10	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
7	Системы рациональных, иррациональны х показательных и логарифмически х уравнений	12	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
8	Задачи с параметрами	16	1		http://school- collection.edu.ru https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
9	Повторение, обобщение, систематизация знаний	16	2		https://fipi.ru/ege/otk rytyy-bank-zadaniy- ege
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		136	10	0	